

INVERTER PROGRAMMING AND REWIRING GUIDE FOR REPLACEMENT OF INVERTERS

Function values for the Fuji / GE inverters FRN00_G9D-_UX / D55XXX V-S part numbers 13830XX:

- 00 = 1 freq. = voltage input
- 01 = 1 external run stop
- 02 = 60 Hz max. frequency
- 03 = 60 Hz base frequency (this is not min. frequency)
- 04 = 200, 208, 220, 230 (not 240), 380, 415, 420 (not 440 -480) output voltage
- 05 = 10 accel. time (seconds)
- 06 = 10 decel. time
- 07 = 1.0 Torque boost limit
- 08 = 0 four pole current limiting inactive for two pole motors
- 09 = ignore limit for disabled four pole current limiting (not used)
- 10 = 0 don't auto-restart after power failure, but set the alarm
- 11 = 70 Hz high frequency limiter
- 12 = 0 Hz low frequency limiter
- 13 = 0 Hz bias frequency
- 14 = 100 % gain for frequency setting from signal
- 15 = 180 % acceleration torque limiting
- 16 = 150 % deceleration torque limiting,
- 17 = 0 Hz starting frequency for DC injection breaking (not used)
- 18 = 0 % strength of DC injection breaking (not used)
- 19 = 0 seconds operating time for DC injection breaking (not used)
- 20 = 0 Hz part of the multistep frequency pattern acceleration (not used)
- 21 26 = 0 Hz part of the multistep pattern (not used)
- 27 = 1 internal thermal overload relay active
- 28 = 0.0 Hz slip compensation control
- 29 = 0 Torque vector control inactive
- 30 = 2 number of motor poles
- 31 = 1 open next block of functions
- 32 = 0000 XI-X4 input terminal functions (not used)
- 33 = 10.0 sec. accel. #2 time (not used)
- 34 = 10.0 sec. decel. #2 time (not used)
- 35 = 15.0 sec. accel. #3 time (not used)
- 36 = 15.0 sec. decel. #3 time (not used)
- 37 = 3.0 sec. accel. #4 time (not used)
- 38 = 3.0 sec. decel. #4 time (not used)
- 39 = 60 Hz base freq. #2 (not used)
- 40 = 230V for 200 240V range, 420V for 380 480V range for 2nd motor (not used)
- 41 = 1.0 Torque boost for 2nd motor (not used)
- 42 = 1 open next block of functions
- 43 = 24 pulse rate multiplier for FMP frequency monitor output (not used)
- 44 = 100 Voltage adjust for FMP frequency monitor output (not used)
- 45 = 100 Voltage adjust for FMA frequency monitor output (not used)
- 46 = 0 FMA output function = frequency (not used)
- 47 = 01234 YI-Y5 output terminal functions
- 48 = 2.5 Hz frequency equivalence hysteresis (not used)
- 49 = 6 Hz low freq. detect level (Hz)
- 50 = 1 Hz low freq. detect hysteresis
- 51 = 6 for 3HP, 10 for 5 HP, 14 for 7.5 HP max. current limit (Amps.)
- 52 = 1 open next block of functions
- 53 = 0 Hz jump freq. #1 (not used)
- 54 = 0 Hz jump freq. #2 (not used)
- 55 = 0 Hz jump freq. #3 (not used)
- 56 = 3 Hz jump freq. hysteresis (not used)
- 57 = 0.5 Hz start frequency
- 58 = 0.0 sec. holding time
- 59 = 0.05 sec. signal filter

- 60 = 1 open next block of functions
- 61 = 0 LED monitor displays output frequency
- 62 = 0 when stopped monitor displays set point
- 63 = 57 multiplier for conveyor speed display
- 64 = 2 display frequency and current
- 65 = 0 special pattern operation inactive
- 66 72 = 0 seconds pattern stage I 7 (not used)
- 73 = 0 linear acceleration for special pattern (not used)
- 74 = 0 special functions (not used)
- 75 = 0 erergy saving operation inactive
- 76 = 0 reverse phase frequency lock inactive
- 77 = 0 do not restore factory settings at this time
- 78 = 1 language = English (0 = Japanese, 2 = Spanish, 3 = French)
- 79 = 5 average intensity level on LCD monitor
- 80 = 1 open next block of functions
- 81 = 10 set carrier frequency to 15 KHz
- 82 = 5 output power delay time after input power applied (seconds)
- 83 = 0 Use function 6 setting to pull in motor after momentary power drop out
- 84 = 0 do not auto reset
- 85 = 5 sec. time between autoresets (not used)
- 86 = 1 standard capacity for motor 1
- 87 = ignore (not used) single motor rated current
- 88 = ignore (not used) single motor no load current
- 89 = ignore (not used) second motor rated current
- 90 = 0 motor 1 tuning inactive
- 91 = ignore (not used) set %R1 motor 1 tuning
- 92 = ignore (not used) set %X1 motor 1 tuning
- 93 = ignore (not used) reserved for manufacturer
- 94 = ignore (not used) reserved for manufacturer
- 95 = 0 allow functions to be modified

Function values for the Magnetek / IDM inverters GPD-XXX / PC3 V-S part numbers 13036XX, 13037XX:

```
An-01 = 0.00 Hz frequency reference #1
An-02 = 0.00 Hz frequency reference #2
An-03 = 0.00 Hz frequency reference #3
An-04 = 0.00 Hz frequency reference #4
An-05 = 0.00 Hz frequency reference #5
An-06 = 0.00 Hz frequency reference #6
An-07 = 0.00 \text{ Hz} frequency reference #7
An-08 = 0.00 \text{ Hz} frequency reference #8
An-09 = 6.00 \text{ Hz jog reference}
bn-01 = 10.0 seconds acceleration time 1
bn-02 = 10.0 seconds deceleration time 1
bn-03 = 10.0 seconds accel. time 2
bn-04 = 10.0 seconds decel. time 2
bn-05 = 100 % frequency command gain
bn-06 = 0 % frequency command bias
bn-07 = 1.0 torque compensation gain
bn-08 = 0.0 % slip compensation gain
bn-09 = 80 % Energy saving gain
bn-10 = 1 monitor displays frequency while running motors
bn-11 = 1.00 Analog monitor channel 1 gain
bn-12 = 0.5 Analog monitor channel 2 gain
Sn-01 = 03 FOR 3 HP, 04 for 5 HP, 05 for 7.5 HP inverter power selection
Sn-02 = 0F V/F pattern set by Cn-02 through Cn-08
Sn-03 = 0000 \text{ read} / \text{set all constants}
Sn-04 = 0000 ramp to stop, run/stop from external signal, external frequency command
Sn-05 = 0000 use non keyboard signals
Sn-06 = 0011 "S" curve at accel./ decel. with 1 sec delay, use internal freq. Ref.
Sn-07 = 0000 Over torque settings
Sn-08 = 0000 \text{ run from on board option}
Sn-09 = 0000 reserved for manufacturer
Sn-10 = 0000 enable stall prevention
Sn-11 = 0000 breaking resistor / fault contacts
Sn-12 = 0100 ramp to stop on external fault input
Sn-13 = 0000 reserved for manufacturer
Sn-14 = 0000 electronic thermal overload relay enabled
Sn-15 = 03 terminal #5 = auto / manual select
Sn-16 = 04 terminal #6 = multistep frequency select
Sn-17 = 07 terminal #7 = use bn-01 through bn-04 for accel./decel. times
Sn-18 = 08 terminal #8 = motors on/off
Sn-19 = 00 terminal #16 = analog input for frequency out
Sn-20 = 00 terminals #9 & #10 output contacts closed while in operation
Sn-21 = 01 terminals #25 & #27 output transistor "on" when output freq. = 0 Hz
Sn-22 = 02 terminals #26 & #27 output transistor "on" when output freq. matches Cn-22
Sn-23 = reserved for manufacturer
Sn-24 = reserved for manufacturer
Sn-25 = 0000 enable command input filter
Sn-26 = 0000 use BCD for digital frequency command (not used)
Sn-27 = 0010 pulse monitor option gain (not used)
Sn-28 = 0100 monitor channel 1 = output frequency, monitor channel 2 = ref. freq.
Cn-01 = 230.0V for 200V-240V (240V requires buck transformer) Voltage limit
Cn-02 = 60.0 \text{ Hz V/F pattern max. frequency}
Cn-03 = 200.0V V/F pattern max. voltage
Cn-04 = 60.0 \text{ Hz V/F pattern max. frequency}
Cn-05 = 3.0 Hz V/F pattern midpoint frequency
Cn-06 = 13V V/F pattern midpoint Voltage
Cn-07 = 1.5 \text{ Hz V/F pattern start frequency}
```

```
Cn-08 = 7V V/F pattern start volts
Cn-09 = 8.5 A for 3 HP, 14.1 A for 5 HP, 19.6 A for 7.5 HP motor rated current
Cn-10 = 1.5 Hz start frequency for DC injection breaking
Cn-11 = 50 % DC injection breaking current
Cn-12 = 0.0 % DC injection breaking at stop
Cn-13 = 0.0 sec. start time for DC injection breaking
Cn-14 = 100 % frequency command upper limit
Cn-15 = 0 % frequency command lower limit
Cn-16 = 0.0 Hz skip frequency #1 (not used)
Cn-17 = 0.0 Hz skip frequency #2 (not used)
Cn-18 = 0.0 Hz skip frequency #3 (not used)
Cn-19 = 1.0 Hz dead band around skip frequency (not used)
Cn-20 = 0 display output frequency
Cn-21 = 0.0 Hz speed coincidence frequency
Cn-22 = 2.0 Hz speed coincidence bandwidth
Cn-23 = 15.0 KHz carrier frequency upper limit
Cn-24 = 15.0 KHz carrier frequency lower limit
Cn-25 = 00 frequency proportional gain
Cn-26 = 160 % over torque detection level
Cn-27 = 0.1 seconds over torque detection time
Cn-28 = 170 % accel. stall prevention level - constant torque
Cn-29 = 50 % accel. stall prevention level - constant HP
Cn-30 = 160 % stall prevention level at set point
Cn-31 = unknown factory setting - Ohms motor to motor cable resistance
Cn-32 = unknown factory setting - Watts torque compensation iron loss
Cn-33 = unknown factory setting - Volts torque compensation limiter
Cn-34 = 30 \% motor no load current
Cn-35 = 2.0 seconds slip compensation first order lag
Cn-36 = 0 number of autorestart attempts
Cn-37 = 0.0 seconds momentary power failure ride through time
Cn-38 = 150 % speed search operation level
Cn-39 = 2.0 sec. speed search decel. time
Cn-40 = unknown factory setting mm. base block time
Cn-41 = 100 % V/F during speed search
Cn-42 = 0.3 seconds Voltage recovery time
Un-01 = display only - frequency reference (Hz)
Un-02 = display only - output frequency (Hz)
Un-03 = display only - Output current (Amps)
Un-04 = display only -Voltage reference (V)
Un-05 = display only - DC Voltage bus (Vpk to neutral)
Un-06 = display only - Output power (KW)
Un-07 = display only - input terminal status
Un-08 = display only - Output terminal status
Un-09 = display only - LED lamp check (8.8.8.8.8.)
Un-10 = display only - PROM #
```

Function values for the IDM mini-inverters CIMR-PCU-XXXX V-S part number 13798XX:

00 = 3 all functions available for setting 01 = 0000 run from external controls 02 = 60.0 Hz max. frequency 03 = 230.0V max. Voltage04 = 60.0 Hz frequency at max. voltage 05 = 3.0 Hz midpoint frequency 06 = 12.0V midpoint Voltage 07 = 1.5 Hz mm. frequency 08 = 7V mm. Voltage09 = 30.0 seconds first acceleration time 10 = 30.0 sec. first deceleration time 11 = 10.0 sec. second acceleration time (not used) 12 = 10.0 sec. second deceleration time 13 = 0.0 Hz reference frequency #1 14 = 0.0 Hz reference frequency #2 15 = 0.0 Hz reference frequency #3 16 = 0.0 Hz reference frequency #4 17 = 6.0 Hz jog reference frequency 18 = 0000 electronic thermal overload relay enabled 19 = 8.5 A for 3 HP, 14.1 A for 5 HP motor rated current 20 = 0001 enable stall prevention 21 = 0000 analog monitor follows output frequency 22 = 1.00 reference frequency gain 23 = 0.00 reference frequency bias 24 = 100 % frequency upper limit 25 = 0 % frequency lower limit 26 = 50 % DC injection braking current 27 = 0.0 sec. stop time for DC injection braking 28 = 0.0 sec. start time for DC injection braking 29 = 1.0 gain for automatic torque boost 30 = 170 % stall prevention level while running 31 = 160 % stall prevention level while accelerating 32 = 13 alarm reset when terminal #3 connected to ground 33 = 1 external fault (stop) if terminal #4 connected to ground 34 = 3 external fault (stop) if terminal #5 disconnected from ground 35 = 0 analog input = frequency gain / frequency set point 36 = 3 terminals FLT energized if output frequency greater than or equal detect freq. 37 = 0 terminal #13 closed while running 38 = 1 terminal #14 closed if output frequency = detect frequency (function 39) 39 = 5.0 Hz detection frequency 40 = 0000 over torque detection 41 = 160 % over torque detection level 42 = 0.1 sec. over torque detection time 43 = 6 carrier frequency = 15 KHz 44 = reserved for manufacturer 45 = 1.00 analog monitor gain 46 = 0000 discontinue operation after momentary power loss 47 = 0 number of restart attempts after fault 48 = display only = latest fault 49 = display only = PROM number 50 = 0.0 Hz skip frequency 51 = 1.0 Hz skip range around skip frequency 52 = reserved for manufacturer 53 = reserved for manufacturer 54 = reserved for manufacturer 55 = reserved for manufacturer

56 = reserved for manufacturer
57 = reserved for manufacturer
58 = reserved for manufacturer
59 = reserved for manufacturer

Function values for the IDM mini-inverters CIMR-J7CU-XXXX V-S part numbers 14514XX:

```
01 = 1 all functions available for setting
02 = 1 run from external controls
03 = 2 analog input (0 - 10V) = frequency gain / frequency set point
04 = 0 decelerate to a stop (not coast to stop)
05 = 1 disable reverse direction
06 = 0 enable "stop" key / command
07 = 1 set freq. By keypad (not used)
08 = 1 disable freq. Setting by "enter key" (not used)
09 = 60.0 Hz maximum output frequency
10 = 230 V. maximum output voltage
11 = 60.0 Hz maximum frequency output at max. Voltage
12 = 30.0 Hz middle output frequency
13 = 50 V. middle frequency voltage
14 = 1.5 Hz minimum output frequency
15 = 10 V. minimum output voltage
16 = 10.0 Seconds Acceleration time # 1
17 = 10.0 S. Deceleration time # 1
18 = 10.0 S. Acceleration time # 2
19 = 10.0 S. Deceleration time # 2
20 = 0 no "S-curve" accel. / decel. Characteristic provided
21 = 0.0 Hz multi-step speed select frequency reference # 1 (not used)
22 = 0.0 Hz multi-step speed select frequency reference # 2 (not used)
23 = 0.0 Hz multi-step speed select frequency reference # 3 (not used)
24 = 0.0 Hz multi-step speed select frequency reference # 4 (not used)
25 = 0.0 Hz multi-step speed select frequency reference # 5 (not used)
26 = 0.0 Hz multi-step speed select frequency reference # 6 (not used)
27 = 0.0 Hz multi-step speed select frequency reference # 7 (not used)
28 = 0.0 Hz multi-step speed select frequency reference # 8 (not used)
29 = 6.0 Hz jog frequency reference
30 = 100 % frequency reference upper limit
31 = 0 % frequency reference lower limit
32 = 8.5 \text{ A } (3\text{hp}/2.2\text{kW}) \text{ or } 14.1 \text{ A } (5\text{hp}/3.7\text{kW}) \text{ maximum current limit}
33 = 0 electronic thermal overload applied to general purpose motors
34 = 8 minutes electronic thermal relay time delay
35 = 0 inverter cooling fan operates only when inverter is in run mode
36 = 2 input S2 = reverse run (not used)
37 = 5 input S3 = fault reset
38 = 3 input S4 = external fault input (connect to SC if fault - not used)
39 = 6 input S5 = activate sepeed reference # 1 (not used)
40 = 5 output contact MA closes when the output frequency is less than 5Hz (n58)
41 = 100 % of max. analog input voltage (n03) = maximim output frequency (n09)
42 = 0 % of max frequency (n09) when analog input voltage = 0 Volts
43 = 2.00 seconds analog frequency reference filter time constant
44 = 0 output a frequency to the monitor terminals (not used)
45 = 1.00 gain (multiplier) signal at monitor terminals
46 = 4 set carrier frequency to 10 kHz
47 = 1 automatically restart after a momentary power drop out if the run relay is
       still energized.
48 = 0 do not try to automatically restart after a fault
49 = 0.0 Hz skip frequency # 1
50 = 0.0 Hz skip frequency # 2
51 = 0.0 Hz skip frequency band width
52 = 50% DC injection braking current
53 = 0.0 seconds DC injection braking time at stop
54 = 0.0 seconds DC injection braking time at start
55 = 0 provide stall prevention during deceleration
```

```
56 = 170 \% (of inverter max current) stall prevention current limit for acceleration
```

- 57 = 160 % (of inverter max current) stall prevention current limit during run
- 58 = 5 Hz frequency level detected by n40 above & output to MA terminal
- 59 = 0 over torque not detected
- 60 = 160 % over torque detection level
- 61 = 0.1 seconds over torque detection time delay
- 62 = 0 output frequency is not recorded during a "hold" command
- 63 = 1.0 torque compensation gain
- 64 = 2.9 Hz (3hp/2.2kW) or 3.3 Hz (5hp/3.7kW) rated slip for motors
- 65 = 35 % (3hp/2.2kW) or 32 % (5hp/3.7kW) motor no load current
- 66 = 1.0 motor slip compensation gain
- 67 = 2.0 seconds motor slip compensation primary delay time
- 68 = 0 timeover detection not used
- 69 = 0 communications frequency reference (not used)
- 70 = 0 slave address (not used)
- 71 = 2 initial baud rate (not used)
- 72 = 0 parity bits (not used)
- 73 = 10 miliseconds waiting time for "send" signal
- 74 = 0 RTS/CTS disabled (not used)
- 75 = (not available for setting)
- 76 = (not available for setting)
- 77 = (not available for setting)
- 78 = (not available for setting)
- 79 = (not available for setting)

Function values for the AC Tech series SCF V-S part numbers 14514XX:

```
01 = 00 for input voltages of 200 - 208,
   = 01 for input voltages of 220 - 240
02 = 04 set carrier frequency to 10 kHz
03 = 01 normal start up
04 = 04 decelerate with DC injection braking
05 = 03 use 0 - 10V input to control output
06 = 01 \text{ TB-}14 \text{ not assigned}
07 = not defined
08 = 01 TB-30 analog output disabled
09 = 01 TB-31 analog output disabled
10 = 01 TB-13A input disabled
11 = 01 TB-13B input disabled
12 = 01 TB-13C input disabled
13 = 02 NPN open collector at TB-15 conducts current to ground if invertr is running
14 = 01 control is through the terminal strip only
15 = 01 disable serial communications
16 = 01 keypad speed 0.1 Hz
17 = 01 rotate forward only
18 = 03 range select, set n19, n20,n21 for 1 second increments (may not be available)
19 = 10 seconds acceleration time
20 = 10 seconds deceleration time
21 = 00 seconds of DC injection braking during deceleration
22 = 00 % of max voltage for DC braking
23 = 00 Hz minimum frequency
24 = 60 Hz maximum frequency
25 = 150% of max current - current limit
26 = 100% of max current - motor overload
27 = 60 Hz base frequency
28 = 1% of base frequency - fixed boost
29 = 00 % of base frequency acceleration boost
30 = 00 % of base frequency slip compensation
31 = 00 Hz preset speed # 1
32 = 00 Hz preset speed # 2
33 = 00 Hz preset speed # 3
34 = 00 Hz preset speed # 4
35 = 00 Hz preset speed # 5
36 = 00 Hz preset speed # 6
37 = 00 Hz preset speed # 7
38 = 0.0 \text{ Hz skip bandwidth}
39 = 0.0 speed scaling gain
40 = 60 Hz frequency scale at TB-30
41 = 200% load scaling at TB-30 and TB-31 for load outputs
42 = 20.0 \text{ Sec. Accel.} / \text{decel.} #2
43 = 1 serial address
44 = 000 disable password. Set at AC Tech to 225 (or 1225)
45 = not defined
46 = not defined
47 = 01 do not clear error history
48 = 01 use user settings (not OEM module or AC Tech settings)
49 = not defined
50 = - fault history - view only
51 = - software codes - view only
52 = - DC Bus voltage - view only
53 = - motor voltage - view only
54 = - load current - view only
55 = -0 - 10 Volt input - view only
```

56 = - 4 - 20 mA input - view only 57 = - TB strip status - view only 58 = - keypad status - view only 59 = - TB-30 output - view only 60 = - TB-31 output - view only

Function values for the Fuji / GE inverters 6KP11XXXXXX1A1 / D66XXX V-S part number1465101/TDA2036:

- F00 = 0 all function data can be changed
- F01 = 1 use voltage input (pins 11 & 12) to set frequency
- F02 = 1 run/stop from screw terminals leave stop button active
- F03 = 60 Hz. Maximum output frequency
- F04 = 60 Hz Base output frequency range
- F05 = 220 V rated output voltage
- F06 = 220 V maximum output voltage
- F07 = 10 Seconds acceleration time
- F08 = 10 S deceleration time
- F09 = 1.0 Torque boost
- F10 = 1 internal thermal overload relay active
- F11 = 135% (of rated drive current) thermal overload relay current level
- F12 = 0.5 Minutes time delay of thermal overload relay
- F13 = 0 deactivate internal braking resistor
- F14 = 0 immediate shutdown on under voltage, motors coast to a stop
- F15 = 70 Hz upper limit frequency
- F16 = 0 Hz lower limit frequency
- F17 = 100 % of max. frequency for +10V input (gain setting)
- F18 = 0 bias frequency for positive rotation
- F19 = not used
- F20 = 0 Hz DC injection brake starts at 0 Hz (not used)
- F21 = 0 % of output current available for DC injection braking (not used)
- F22 = 0.0 S of operating time for DC injection braking (not used)
- F23 = 0.5 Hz starting frequency
- F24 = 0.0 S hold time for start frequency
- F25 = 0.4 Hz stop frequency at end of deceleration
- F26 = 15 kHz carrier frequency
- F27 = 0 motor sound adjustment available only for carrier frequencies less than 7 kHz
- F28 = not used
- F29 = not used
- F30 = 100% gain of DC output monitor voltage sent to terminal FMA as set by F31
- F31 = 0 set monitor output (terminal FMA) to indicate output frequency
- F32 = not used
- F33 = 1440 pulses per second PWM output to terminal FMP (another output monitor)
- F34 = 0 % of full scale offset to FMA the pulse frequency varies directly according to function F35
- F35 = 0 FMA terminal monitors output frequency
- F36 = 0 de-energize the alarm relay when power drops out. (fail safe normally energized)
- F37 = not used
- F38 = not used
- F39 = not used
- F40 = 999 % disable drive torque limiting
- F41 = 999 % disable braking torque limiting
- F42 = 0 disable torque vector control (not effective with multiple motors)
- E01 = 8 alarm reset if terminal X1 connected to ground (CM)
- E02 = 8 alarm reset if terminal X2 connected to ground (CM)
- E03 = 8 alarm reset if terminal X3 connected to ground (CM)
- E04 = 8 alarm reset if terminal X4 connected to ground (CM)
- E05 = 8 alarm reset if terminal X5 connected to ground (CM)
- E06 = 8 alarm reset if terminal X6 connected to ground (CM)
- E07 = 8 alarm reset if terminal X7 connected to ground (CM)
- E08 = 8 alarm reset if terminal X8 connected to ground (CM)
- E09 = 8 alarm reset if terminal X9 connected to ground (CM)
- E10 = 6.0 S acceleration time #2 (for profile) not used
- E11 = 6.0 S deceleration time #2 (for profile) not used
- E12 = 6.0 S acceleration time #3 (for profile) not used

```
E13 = 6.0 S deceleration time #3 (for profile) - not used
E14 = 6.0 S acceleration time #4 (for profile) - not used
E15 = 6.0 S deceleration time #4 (for profile) - not used
E16 = 999 % disable drive torque limiting #2
E17 = 999 % disable braking torque limiting #2
E18 = not used
E19 = not used
E20 = 0 - output of terminal Y1 to CMY conducts if in RUN mode - not used
E21 = 1 – output of terminal Y2 to CMY conducts if the out output is at running frequency (E30) – not used
E22 = 2 – output of terminal Y3 to CMY conducts if output frequency above 5 Hz (E31 & E32)
E23 = 7 - output of terminal Y4 to CMY conducts if thermal over load is about to trip (E33 & E34) - not used
E24 = 15 - output of terminal Y5 to CMY conducts if FWD or REV command received - not used
E25 = not used
E26 = not used
E27 = not used
E28 = not used
E29 = not used
E30 = 2.5 Hz - "at set point" detection band width
E31 = 5 Hz output frequency detection point (see E22)
E32 = 0.2 Hz hysteresis for E31 detection point
E33 = 0 use thermal overload relay to activate early warning (E23)
E34 = 22 A = 100 % activate early warning (E23) when overload relay current is exceeded but before timeout
E35 = 10.0 S delay time for E23 alarm if output current level is exceeded – not used
E36 = 60 Hz – ferquency detection level #2 – not used
E37 = 22 A = 100 % 2<sup>nd</sup> early warning activation level – not used
E38 = not used
E39 = not used
E40 = 100.00 % max. percent of set point can be displayed on front panel
E41 = 0.00 % min. percent of set point can be displayed on front panel
E42 =0.5 S between LED display updates (flicker filter)
E43 = 0 LED display set frequency when stopped, actual frequency while running
E44 = 0 LED display set frequency when stopped, actual frequency while running
E45 = 0 LCD displays status of operation
E46 = 1 display information in english (0 = Japanese, 2 = German, 3 = French, 4 = Spanish, 5 = Italian)
E47 = 5 set LCD contrast
C01 = 0 Hz Jump frequency #1 - not used
C02 = 0 Hz Jump frequency #2 - not used
C03 = 0 Hz Jump frequency #3 - not used
C04 = 3 Hz Jump frequency hysteresis – not used
C05 = 0.00 Hz multi-step frequency #1 (profile) - not used
C06 = 0.00 Hz multi-step frequency #2 (profile) - not used
C07 = 0.00 Hz multi-step frequency #3 (profile) – not used
C08 = 0.00 Hz multi-step frequency #4 (profile) - not used
C09 = 0.00 Hz multi-step frequency #5 (profile) - not used
C10 = 0.00 Hz multi-step frequency #6 (profile) – not used
C11 = 0.00 Hz multi-step frequency #7 (profile) - not used
C12 = 0.00 Hz multi-step frequency #8 (profile) – not used
C13 = 0.00 Hz multi-step frequency #9 (profile) - not used
C14 = 0.00 Hz multi-step frequency #10 (profile) - not used
C15 = 0.00 Hz multi-step frequency #11 (profile) – not used
C16 = 0.00 Hz multi-step frequency #12 (profile) - not used
C17 = 0.00 Hz multi-step frequency #13 (profile) - not used
C18 = 0.00 Hz 0.00 multi-step frequency #14 (profile) - not used
C19 = 0.00 Hz 0.00 multi-step frequency #15 (profile) - not used
C20 = 5.00 Hz move frequency for jogging
C21 = 0 if set for pattern operation (F01=10) do one pattern then stop – not used
```

```
C22 = 0.00 F1 pattern stage #1 0.00 Seconds, Forward rotation, accelerate - not used
C23 = 0.00 F1 pattern stage #2 0.00 Seconds, Forward rotation, accelerate – not used
C24 = 0.00 F1 pattern stage #3 0.00 Seconds, Forward rotation, accelerate – not used
C25 = 0.00 F1 pattern stage #4 0.00 Seconds, Forward rotation, accelerate - not used
C26 = 0.00 F1 pattern stage #5 0.00 Seconds, Forward rotation, accelerate – not used
C27 = 0.00 F1 pattern stage #6 0.00 Seconds, Forward rotation, accelerate - not used
C28 = 0.00 F1 pattern stage #7 0.00 Seconds, Forward rotation, accelerate - not used
C29 = not used
C30 = 2 set second frequency by 4 - 20 mA to terminal C - not used
C31 = 0.0 % offset to analog input at terminal 12
C32 = 100.0 % offset to analog input at terminal C1 – not used
C33 = 1.00 Second analog input filter sampling time - noise filter
P01 = 2 number of motor poles
P02 = default 8.7 kW 7.5 hp motor rated power
P03 = default 22 A motor rated current
P04 = 0 deactivate motor tuning (ineffective for multiple motors)
P05 = 0 deactivate continuous motor tuning
P06 = default (6.23) A motor no load current
P07 = default (2.65)% motor constant
P08 = default (28.91)% motor / drive impedance
P09 = 0.00 Hz motor slip compensation
H03 = 0 disabled - 1 would reset ALL functions to factory default
H04 = 0 set auto reset counter value - not used
H05 = 5 S wait before restart after reset - not used
H06 = 0 run internal cooling fan continuously
H07 = 0 use straight line acceleration / deceleration (not soft start "S" pattern)
H08 = 1 lock out reverse rotation
H09 = 0 do not restart a motor until it is stopped
H10 = 0 deactivate "energy save" tuning
H11 = 0 decelerate to a stop using the H07 set pattern
H12 = 1 activate internal over current limiting
H13 = 0.1 S power line drop out ride through time
H14 = 10.00 Hz/S rate of change to synchronize slowing down motor with drive
H15 = 235 auto restart voltage - not used
H16 = 999 in the event of a power drop out, hold the last command until power is restored (or bus power drops out)
H17 = not used
H18 = 0 deactivate analog input torque control
H19 = 0 deactivate "active drive" function – leave acceleration time as set above
H20 = 0 deactivate PID motor control
H21 = 1 use 4-20mA input for motor speed feed back for PID motor control - not used
H22 = 0.1 proportional gain for PID motor control – not used
H23 = 0.0 integral gain for PID motor control – not used
H24 = 0.00 differential gain for PID motor control - not used
H25 = 0.5 S feed back filter / sample time for PID motor control - not used
H26 = 0 deactivate PTC thermistor mode for over load relay – not used
H27 = 1.60 V PTC thermistor trip level for overload relay – not used
H28 = 0.0 Hz droop rate between motors driving a common load – nnot used
H29 = not used
H30 = 0 disable serial communications
H31 = 1 RS-485 address - not used
H32 = 2 on comm error retry for H33 set time before stop – not used
```

H33 = 2.0 S retry time for H32 – not used H34 = 1 set baud rate to 9600 – not used H35 = 0 set word length to 8 bits – not used H36 = 0 set parity to none – not used H37 = 0 set 2 stop bits – not used H38 = 0 disable comm failure detection - not used

H39 = 0.01 S response time to host comm – not used

A01 = 60 Hz motor 2 max frequency - not used

A02 = 60 Hz motor 2 base frequency - not used

A03 = 230 V motor 2 rated voltage - not used

A04 = 230 V motor 2 max. voltage - not used

A05 = 2.0 motor 2 torque boost - not used

A06 = 1 motor 2 overload relay mode selsec - not used

A07 = default (18.60) motor 2 overload relay set level - not used

A08 = 5 motor 2 overload relay delay time - not used

A09 = 0 disable motor 2 torque vector control - not used

A10 = 4 motor 2 number of poles - not used

A11 = default (7.5) motor 2 rated torque - not used

A12 = default (18.60) motor 2 rated current - not used

A13 = 0 disable motor 2 start up motor tuning - not used

A14 = 0 disable motor 2 continuous motor tuning – not used

A15 = default (6.23) motor 2 no load current – not used

A16 = default (2.65) motor 2 motor constant – not used

A17 = default (28.91) motor 2 impedance matching – not used

A18 = 0.00 Hz motor 2 slip compensation - not used

Function values for the ABB inverters ACS501-00X-X V-S part number 138310X:

Never used or programmed.

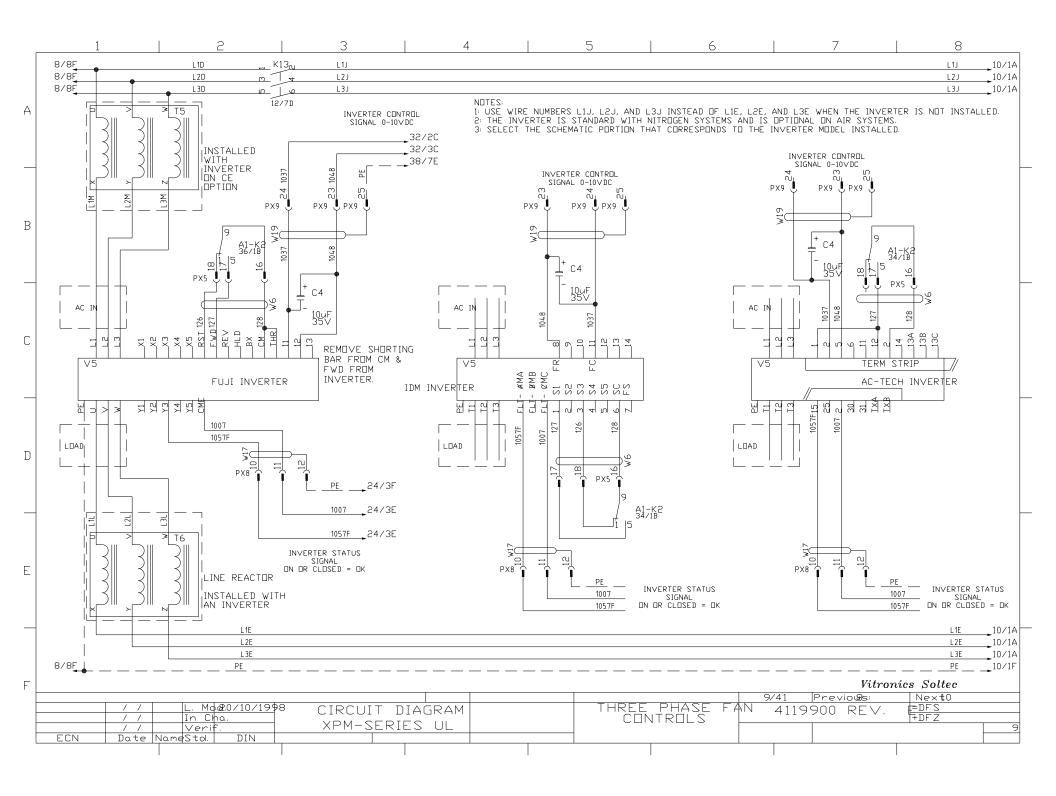
Connections:

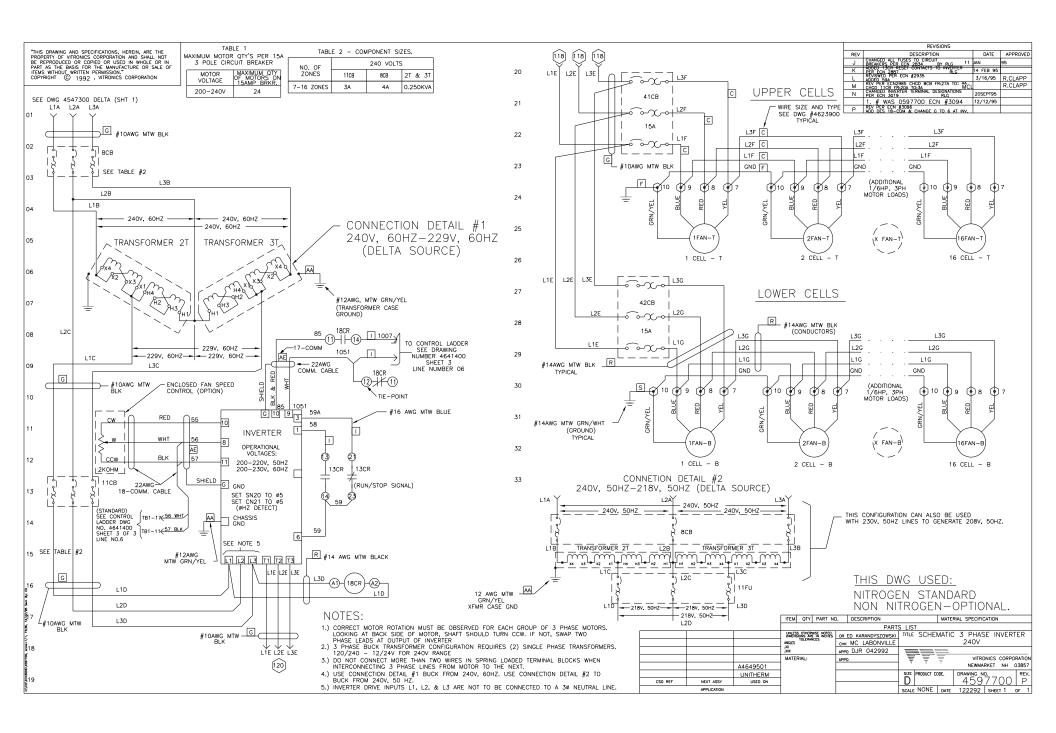
13830XX = Fuji / GE inverters FRN00 G9D- UX/D55XXX

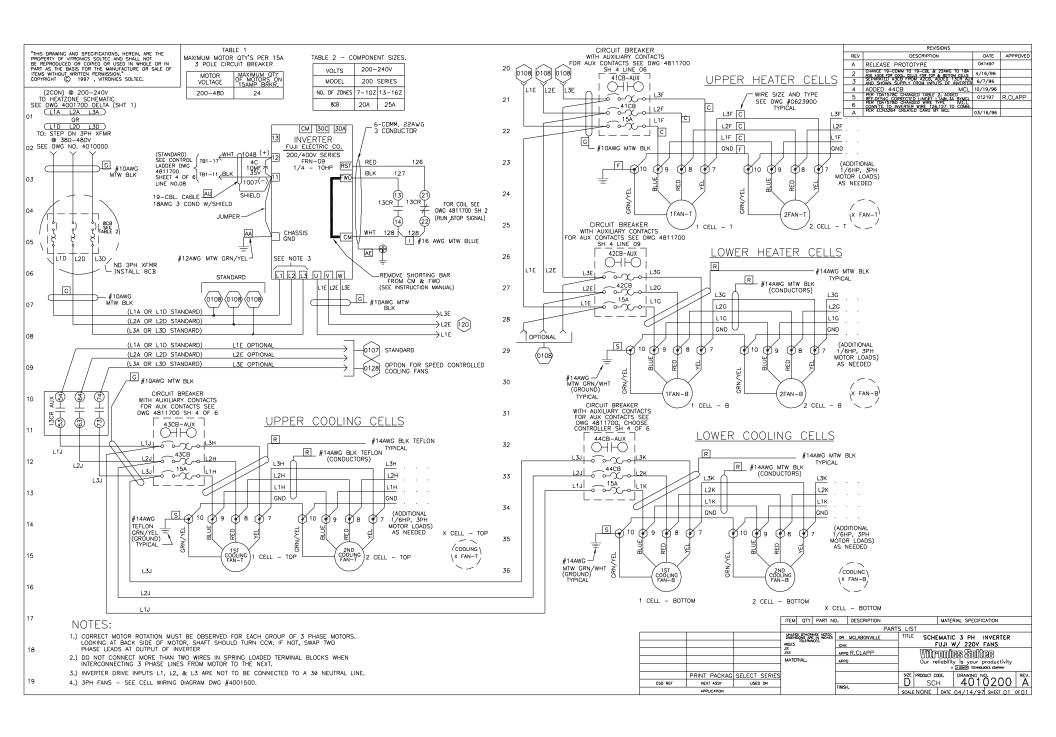
13036XX = Magnetek / IDM inverters GPD-XXX / PC3 380-480V

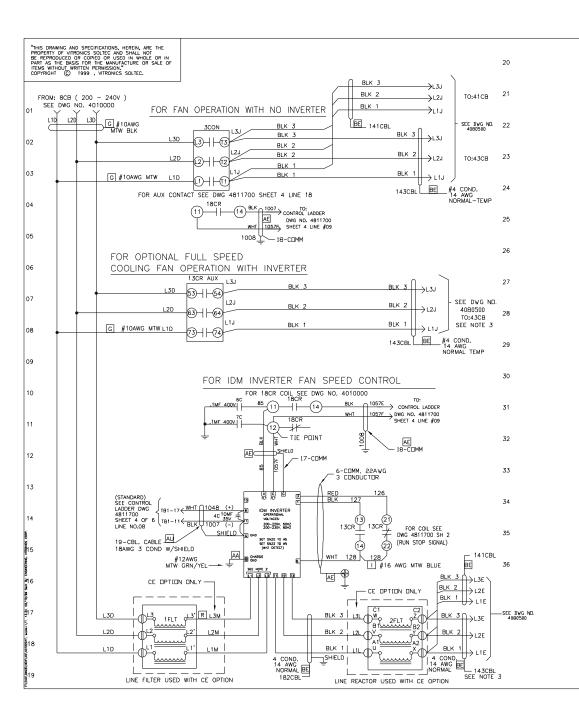
13037XX = Magnetek / IDM inverters GPD-XXX / PC3 200-240V

13798XX = IDM mini-inverters CIMR-PCU-XXXX


14514XX = IDM mini-inverters CIMR-J7CU-XXXX

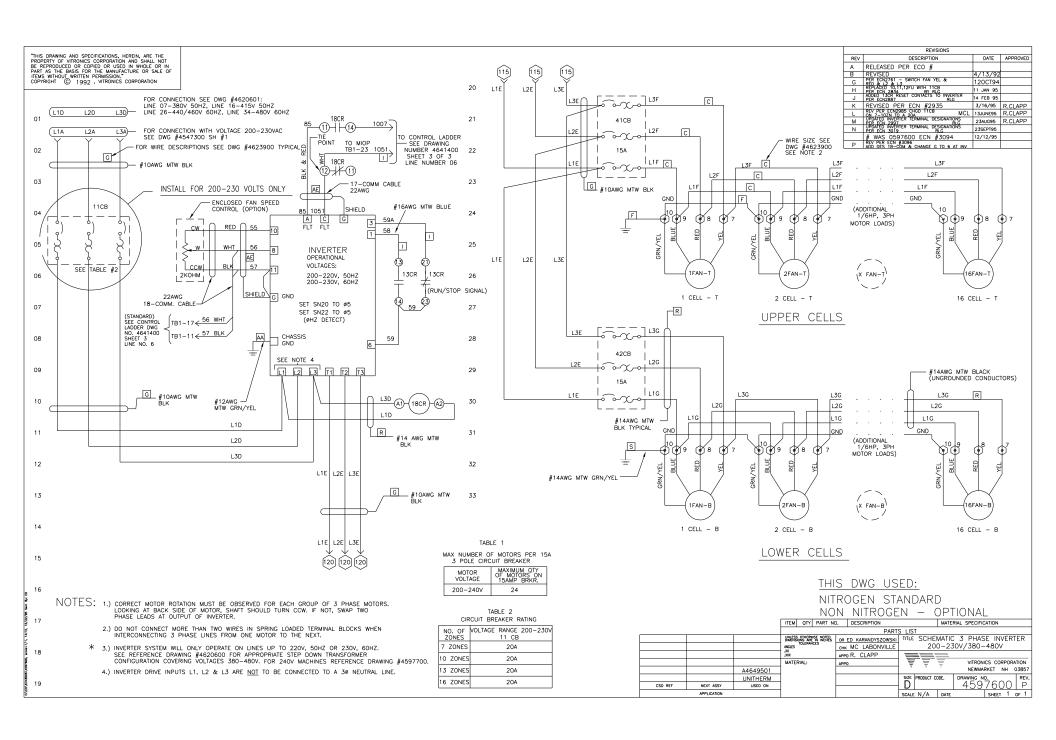

14514XX = AC Tech series SCF

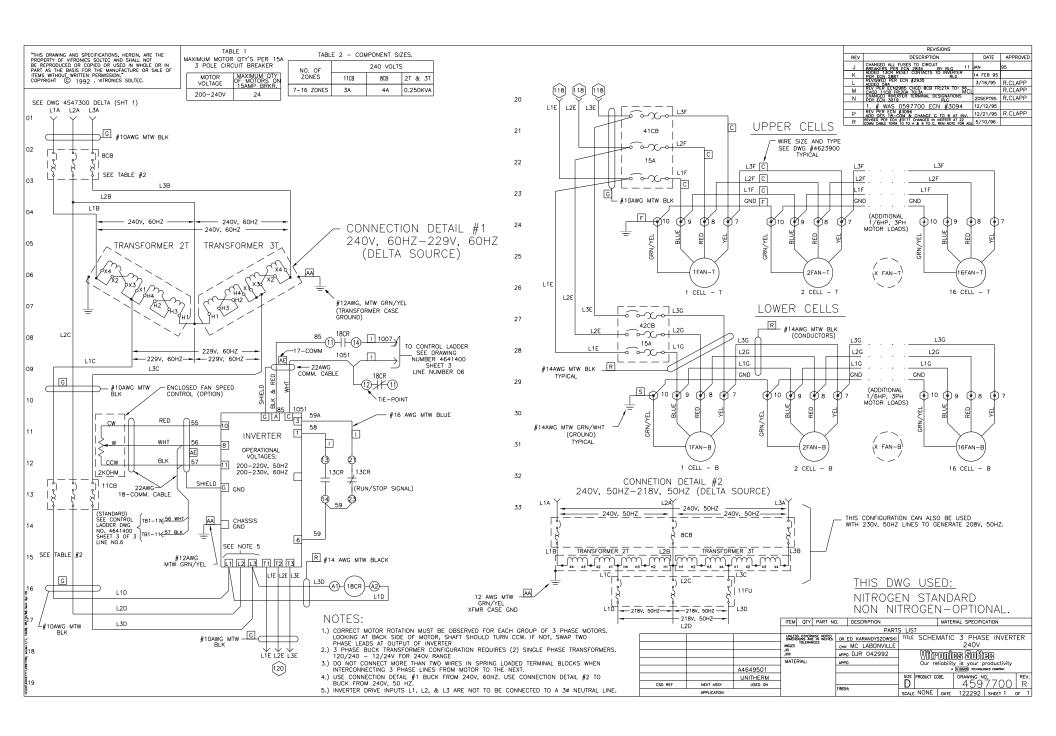

1465101 = Fuji / GE inverters 6KP11XXXXXX1A1 / D66XXX

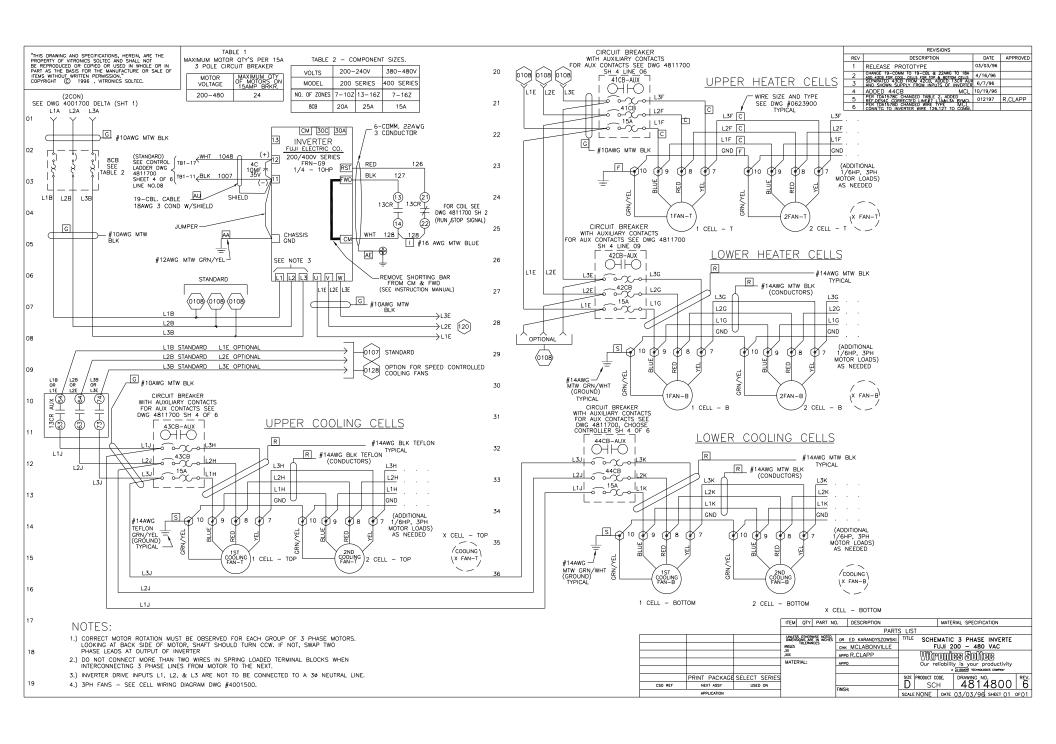

Wire number Vs Connection:

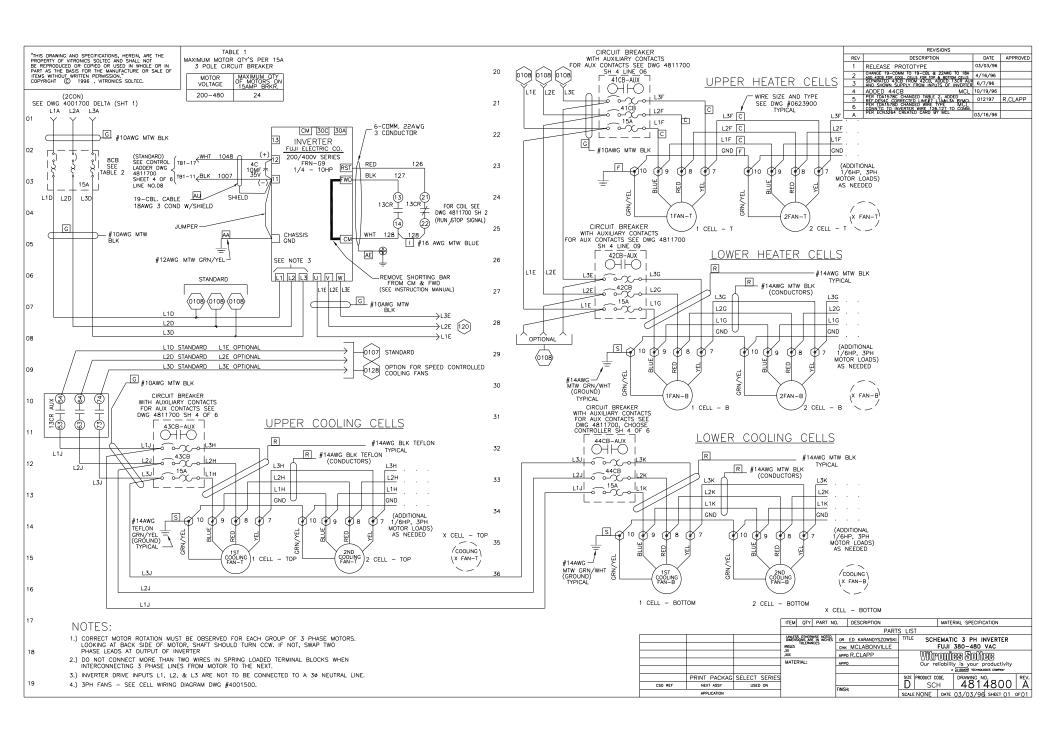
	L1-in	L2-in	L3-in	G/Y	L1-out	L2-out	L3-out	126 / 59A	127 / 58	128 / 59	1037 / 57	1048 / 56	1057F / 85	1007/1051
13830XX	L1	L2	L3	PE	U	V	W	RST	FWD	CM+ THR	11	12	Y3	CME
13036XX	L1	L2	L3	GND	T1	T2	T3	3	1	6	11+G	8	FLTA	FLTC
13037XX	L1	L2	L3	GND	T1	T2	T3	3	1	6	11+G	8	FLTA	FLTC
13798XX	L1	L2	L3	PE	T1	T2	T3	3	1	6	11	8	FLTA	FLTC
14514XX – IDM	L1	L2	L3	PE	T1	T2	T3	S3	S1	SC	FC	FR	MA	MC
14514XX – AC Tech	L1	L2	L3	PE	T1	T2	T3	-	1&12	2	2	5	15	2
1465101	L1	L2	L3	PE	U	V	W	X6	FWD	CM	11	12	Y3	CMY

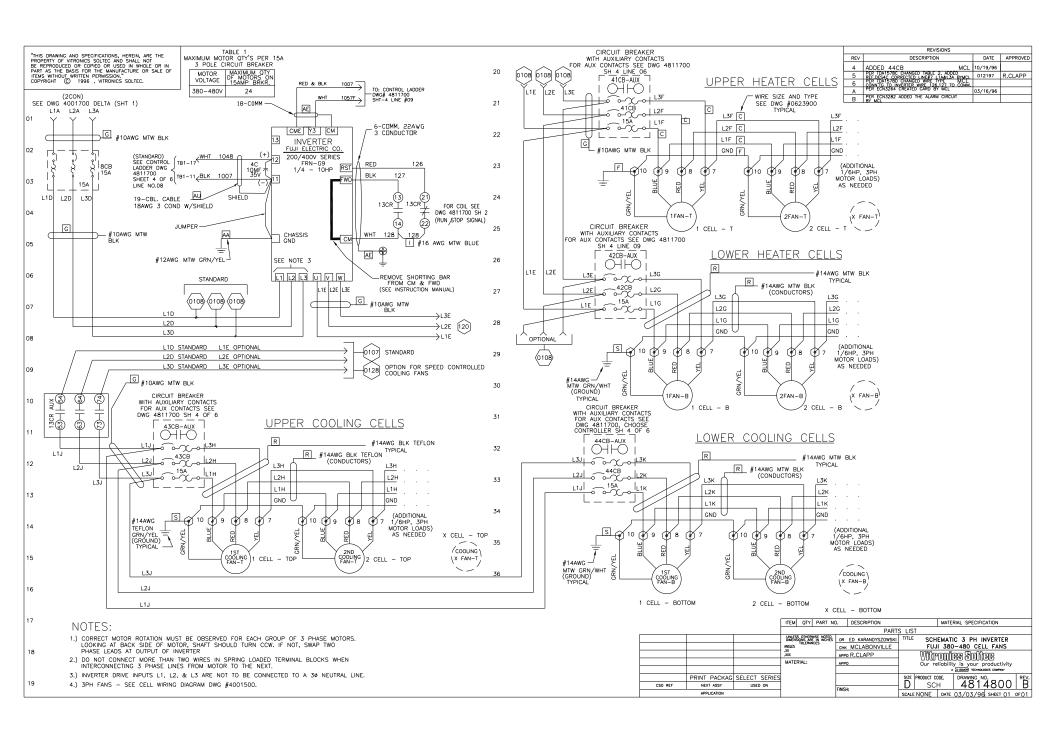
REVISIONS							
REV	DESCRIPTION	DATE	APPROVED				
4		10/19/96					
5	PER TDA157BC CHANGED TABLE 2, ADDED REF.DES4C CORRECTED LINE#7 L1A&L3A BYMCL	012197					
6	PER TDA1578D CHANGED WIRE TYPE CONN'TG TO INVERTER WIRE 126,127 TO COMM.						
Α	PER ECN3264 CREATED CARD BY MCL	03/16/96					
В	PER ECN3282 ADDED 18CR MCL CHGD VALUES IN TABLE 2						
B1	ADDED THE FILTER FOR CE MACHINE.						
B2	CHGD SPEED CONTROLLED COOL FANS						
. C.	PER ECN 3412 IMPLEMENTED B1 & B2 BY MCL						
D	PER ECN3434-2 BY REC REDUCED TO ALL FAN CONTROL CIRCUITS	01/08/98					
Ε	PER ECN3486 BY MCL CHCD TABLE 1 TO INDICATE MAX OF FANS	04/16/98					
F	PER ECN3595 BY REC CHG INVERTER FROM FUJI/GE TO IDM	02/05/99					


TABLE 1 - COMPONENT SIZES.


VOLTS	200-240V							
INVERTER MODEL		200						
MACHINE SIZE	5-7Z	10Z	132	16Z				
NO, OF FANS	14 MAX	20 MAX	26 MAX	32 MAX				
INVERTER HP	3HP	5HP	5HP	7,5HP				


NOTES:


- 1.) CORRECT MOTOR ROTATION MUST BE OBSERVED FOR EACH GROUP OF 3 PHASE MOTORS. LOOKING AT BACK SIDE OF MOTOR, SHAFT SHOULD TURN CCW. IF NOT, SWAP TWO PHASE LEADS AT OUTPUT OF INVERTIER
- 2.) INVERTER DRIVE INPUTS L1, L2, & L3 ARE NOT TO BE CONNECTED TO A 30 NEUTRAL LINE.
- 3.) 143 CABLE IS CONNECTED TO 2FLT IS STANDARD, CONNECTION TO 13CR INSTEAD OF 2 FLT IS OPTION.


	ITEM QTY PART N	D. DESCRIPTION	MATERIAL SPECIFICATION			
	PARTS LIST					
	UNLESS OTHERWISE NOTED DIMENSIONS ARE IN INCHES TOLERANCES	DR MCLABONVILLE	TITLE SCHEMATIC 3 PH FAN CONTROL			
	ANGLES	CHK				
	xxx	APPO R,CLAPP	Vitronies Soltee			
	MATERIAL:	APPD	Our reliability is your productivity			
			A 2006B) TECHNOLOGES COMPANY			
PRINT PACKAG SELECT SERIES	3		SIZE PRODUCT CODE. DRAWING NO. REV.			
CSD REF NEXT ASSY USED ON		FINISH:	D sch 4010200 F			
APPLICATION		rinian.	SCALE NONE DATE D1/08/98 SHEET 01 OF D1			

